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It was previously shown by the authors that a directed graph on a linearly ordered set of 
edges (ordered graph) with adjacent unique source and sink (bipolar digraph) has a unique 
fully optimal spanning tree, that satisfies a simple criterion on fundamental cycle/cocycle 
directions. This result is related to a strengthening of the notion of optimality in linear 
programming. Furthermore, this result yields, for any ordered graph, a canonical bijection 
between bipolar orientations and spanning trees with internal activity 1 and external 
activity 0 in the sense of the Tutte polynomial. This bijection can be extended to all 
orientations and all spanning trees, yielding the active bijection, presented for graphs in 
other papers. In this paper, we specifically address the problem of the computation of the 
fully optimal spanning tree of an ordered bipolar digraph. In contrast with the inverse 
mapping, built by a straightforward single pass over the edge set, the direct computation 
is not easy and had previously been left aside. We give two independent constructions. The 
first one is a deletion/contraction recursion, involving an exponential number of minors. It 
is structurally significant but it is efficient only for building the whole bijection (i.e., all 
images) at once. The second one is more complicated and is the main contribution of the 
paper. It involves just one minor for each edge of the resulting spanning tree, and it is 
a translation and an adaptation to the case of graphs, in terms of weighted cocycles, of 
a general geometric linear programming type algorithm, which allows for a polynomial 
time complexity.

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

This paper is in the continuation of a series of papers by the authors involving the active bijection and fundamental 
properties of directed graphs on a linearly ordered set of edges (and, more generally, of oriented matroids on a linearly 
ordered ground set), including [4–14]. This paper is focused on a special kind of directed graph which is central in the 
series. It answers computational problems that were previously left aside, and can be read independently of the rest of the 
series, though it is rather technical and specialized. Parts of the formalism and of the technique that we use are inspired by 
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(oriented) matroid theory, but the paper is written in terms of graphs and can be read by a graph specialist. Also, it relies 
upon specificities of graphs.

In a previous paper [7] (see also [9]), we showed that a directed graph 
−→
G on a linearly ordered set of edges, with 

adjacent unique source and sink connected by the smallest edge (ordered bipolar digraph), has a unique special spanning 
tree that satisfies a simple criterion on fundamental cycle/cocycle directions, and that we call the fully optimal spanning tree 
α(

−→
G ) of 

−→
G . Precise definitions of these notions are given in Section 2.

As motivation, let us point out that this notion is important for various reasons. First, it is related to a strengthening 
of the notion of optimality in linear programming. Briefly, a bipolar digraph is a particular case of a bounded region of 
a hyperplane arrangement, and the fully optimal spanning tree is a particular case of the fully optimal basis, which is a 
uniquely determined basis that contains and extensively strengthens the notion of optimal vertex of a bounded region; see 
Remark 4.7, and see [6,9,10,13]. Second, ordered bipolar digraphs are the basic object of a general canonical decomposition 
of directed graphs into bipolar minors, from which one gets, by considering all orientations of a graph (that is, all possible 
directed graphs having this graph as underlying undirected graph): an expression for the Tutte polynomial of the underlying 
undirected graph in terms of products of β-invariants of minors, an important partition of the set of orientations into 
activity classes, and a simple expression for the Tutte polynomial using four orientation activity parameters; see [11, Section 
3]. Third, the fully optimal spanning tree of an ordered bipolar digraph is the basic object that allows us to build a canonical 
bijection, as well as various significant bijections, involving all orientations and all spanning trees of a graph; see [11, Section 
4]. Briefly, associating bipolar orientations of an ordered graph with their fully optimal spanning trees provides a canonical 
bijection with spanning trees with internal activity 1 and external activity 0 in the sense of the Tutte polynomial [17]. It 
is a classical result from [18] that those two sets have the same size, also known as the β-invariant β(G) of the graph 
[3]. We call this bijection the uniactive bijection of G . This bijection can be extended to all orientations and all spanning 
trees, yielding the active bijection, introduced in terms of graphs first in [7], and detailed next in [11] (see also [8] for the 
case of chordal graphs). Beyond graphs, the general context of the active bijection is oriented matroids, as studied by the 
authors in a series of papers, including [4–14]. See [5] for a detailed and practical overview, or see the introductions of [11]
or [12] for a general overview, more information and references. The general purpose of this work is to study graphs (or 
hyperplane arrangements, or oriented matroids) on a linearly ordered set of edges (or ground set), under various structural 
and enumerative aspects.

In the present paper we address the problem of computing the fully optimal spanning tree. Its existence and uniqueness 
is a difficult combinatorial theorem, proved in [7, Theorem 4] (see also [11, Section 4.1] for a short summary in graphs; see 
also [9, Theorem 4.5] for a generalization and a geometric interpretation in oriented matroids; see also [12] for a summary of 
various interpretations and implications of this theorem). As shown in [7] and recalled in Section 2.2, the inverse mapping, 
producing a bipolar orientation for which a given spanning tree is fully optimal, is very easy to compute by a single pass 
over the ordered set of edges. But the direct computation is complicated and it had not been addressed in previous papers. 
When generalized to real hyperplane arrangements, the problem contains and strengthens the linear programming problem 
(as shown in [9], hence the name fully optimal), which is already a non-trivial computational problem, as there are known 
polynomial time algorithms using numerical methods, but no known purely combinatorial polynomial time algorithm. This 
“one way function” feature is a noteworthy aspect of the active bijection. Here, we give two independent constructions to 
compute the mapping, that is, to compute the fully optimal spanning tree of an ordered bipolar digraph.

The first construction, in Section 3, is recursive, by deletion/contraction of the greatest element. It was recently given 
in [11, Section 6.1] in the same way, but we recall it for the sake of completely addressing the problem and detailing 
computational complexity aspects. Let us observe that it is usual to have some deletion/contraction constructions when 
the Tutte polynomial is involved. This construction of the mapping has a short statement and proof, and it can be used 
to efficiently build the whole bijection at once (i.e., all the images simultaneously; see Remark 3.5). So, it is satisfying for 
structural understanding and for a global approach, but it is not satisfying in terms of computational complexity for building 
one single image as it involves an exponential number of minors. Let us mention that this construction is part of a general 
deletion/contraction framework [11, Section 6], and that it generalizes to oriented matroids [4,12].

The second construction, in Section 4, is more technical and is the main contribution of the paper. It is efficient from 
the computational complexity viewpoint because it involves only one minor for each edge of the resulting spanning tree, 
and it consists of searching, successively in each minor, for the smallest cocycle with respect to a linear ordering of the 
set of signed cocycles induced by a suitable weight function. In this way, the fully optimal spanning tree can be computed 
in polynomial time. In detail, seeing that the successive fundamental cocycles of the fully optimal spanning tree induce 
such optimal cocycles in successive suitable minors is the core of the construction (Theorem 4.3). Actually, this algorithm 
is a translation and an adaptation to the case of graphs (implicitly using that graphic matroids are binary) of a general 
geometric construction obtained by elaborations on pseudo/real linear programming (in oriented matroids / real hyperplane 
arrangements). In particular, searching for a minimum weight signed cocycle amounts to solving a lexicographic multiobjec-
tive linear program (see Remark 4.7 and details in the proof of Lemma 4.9; see Remark 4.11 for related digraph problems). 
Since this is repeated in a number of minors which is bounded by the size of a spanning tree, we get a polynomial time 
construction (Theorem 4.10). Let us mention that, just as we use that graphic matroids are binary, we could directly provide 
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a similar construction for regular matroids, but we shall not detail this. To go further: see [13] for the general geometric 
construction; see [10] for a short formulation of the same algorithm in terms of real hyperplane arrangements; see [9] for 
general relations between the full optimality criterion and usual linear programming optimality; see also [6] on the uniform 
case (for real vectors in general position, the construction is equivalent to standard linear programming).

In addition, let us recall from [7, Section 4] (see also [11, Section 4.1] for more details) that the bijection between 
bipolar orientations and their fully optimal spanning trees directly yields a bijection between cyclic-bipolar orientations 
(the strongly connected orientations obtained from bipolar orientations by reversing the source-sink edge) and spanning 
trees with internal activity 0 and external activity 1 (obtained from spanning trees with internal activity 1 and external 
activity 0 by exchanging in the spanning tree the smallest edge with the second smallest edge of the graph). Hence, the 
algorithms developed here can also be used for this second bijection. Let us mention that those two bijections are also 
connected by an important duality property, called the active duality, which strengthens linear programming duality; see [11, 
Section 4.1] and [9, Section 5].

Lastly, it is important to point out that the two aforementioned constructions of the fully optimal spanning tree do not 
give a new proof of its existence and uniqueness: on the contrary, this crucial fundamental result is used to ensure the 
correctness of these two constructions.

2. Preliminaries

2.1. Usual terminology and tools from oriented matroid theory

All graphs considered in this paper will be connected. They can have loops and multiple edges. A digraph is a directed 
graph, and an ordered graph is a graph G = (V , E) on a linearly ordered set of edges E . Edges of a directed graph are directed
(or oriented) from one endpoint to the other. We still call them edges rather than arcs. A directed graph will be denoted 
with an arrow, 

−→
G , and the underlying undirected graph without arrow, G . In this setting, 

−→
G is called an orientation of G .

The cycles, cocycles, and spanning trees of a graph G = (V , E) are considered as subsets of E , hence their edges can be 
called their elements. The cycles and cocycles of G are always understood as being minimal by inclusion. Given F ⊆ E , we 
denote by G(F ) the graph obtained by restricting the edge set of G to F , that is, the minor G \ (E \ F ) of G . A minor 

−→
G /{e}, 

or 
−→
G \{e}, for e ∈ E , can be denoted for brevity by 

−→
G /e, or 

−→
G \e, respectively. For e ∈ E , we denote by −e

−→
G the digraph 

obtained by reversing the direction of the edge e in 
−→
G .

When connectivity properties and connected components are involved for a digraph, in a construction or a proof, they 
always concern the undirected underlying graph. In particular, saying that 

−→
G (A) is connected for A ⊆ E means that G(A)

is connected and has no isolated vertex in V .
Let G be an ordered (connected) graph and let T be a spanning tree of G . For t ∈ T , the fundamental cocycle of t with 

respect to T , denoted by C∗
G (T ; t), or C∗(T ; t) for brevity, is the cocycle joining the two connected components of T \ {t}. 

Equivalently, it is the unique cocycle contained in (E \ T ) ∪ {t}. For e �∈ T , the fundamental cycle of e with respect to T , 
denoted by CG (T ; e), or C(T ; e) for brevity, is the unique cycle contained in T ∪ {e}.

The technique used in the paper is adapted from oriented matroid techniques, which means in particular that it focuses 
on edges, whereas vertices are usually not used. Given an orientation 

−→
G of a graph G , we will have to deal with directions 

of edges in cycles and cocycles of the underlying graph G , and, sometimes, to deal with combinations of cycles or cocycles. 
To achieve this, it is convenient to use some practical notation and classical properties from oriented matroid theory [2].

A signed edge subset is a subset C ⊆ E provided with a partition into a positive part C+ and a negative part C− . A cycle, or 
cocycle, of G provides two opposite signed edge subsets called signed cycles, or signed cocycles (respectively), of 

−→
G by giving 

a sign in {+, −} to each of its elements with respect to the orientation 
−→
G of G in the natural way. In detail: traversing a 

cycle in a given direction yields positive signs for edges whose direction agree with the traversing direction, and negative 
signs for other edges; and considering the partition of the vertex set induced by a cocycle yields positive signs for edges 
going from one given part to the other one, and negative signs for other edges. In particular, a directed cycle, or a directed 
cocycle, of 

−→
G corresponds to a signed cycle, or a signed cocycle (respectively), all the elements of which are positive, and 

to its opposite, all the elements of which are negative. We will often use the same notation C either for a signed edge 
subset (formally a pair (C+, C−), e.g., a signed cycle) or for the underlying subset (C+ � C− , e.g., a graph cycle). Given a 
spanning tree T of G and an edge t ∈ T , the fundamental cocycle C∗(T ; t) induces two opposite signed cocycles of 

−→
G ; then, 

by convention, the signed fundamental cocycle C∗(T ; t) is considered to be the one in which t is positive. Similarly, given 
an edge e �∈ T , the signed fundamental cycle C(T ; e) is considered to have a positive e. The point of this convention is just 
to determine which of the two opposite signed cycles/cocycles is the fundamental cycle/cocycle.

The next three tools can be skipped in a first reading, as they will only be used in the proof of the main result of the 
paper, namely Theorem 4.3. First, let us recall the definition of the composition C ◦ D between two signed edge subsets 
as the edge subset C ∪ D with signs inherited from C for the element of C and inherited from D for the elements of 
D \ C . This operation is extended by associativity to define the composition of a sequence of signed subsets. We will use 
3
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the classical orthogonality property between a cocycle D and a composition C of cycles of 
−→
G , that is: C ∩ D �= ∅ implies 

(C+ ∩ D+) ∪ (C− ∩ D−) �= ∅ and (C− ∩ D+) ∪ (C+ ∩ D−) �= ∅.
Second, we recall that, given two cocycles C and C ′ of 

−→
G , and an element f ∈ C ∪ C ′ which does not have opposite signs 

in C and C ′ , there exists a cocycle D obtained by elimination between C and C ′ preserving f such that f ∈ D , D+ ⊆ C+ ∪ C ′+ , 
D− ⊆ C− ∪ C ′− , and D contains no element of C ∩ C ′ having opposite signs in C and C ′ . This last property is a strengthening 
of the oriented matroid elimination property in the particular case of digraphs, a short proof of which is the following. 
Assume C defines the partition (V 1, V 2) of the set of vertices, and C ′ defines the partition (V ′

1, V
′
2), with a positive sign 

given to edges from V 1 to V 2 in C and from V ′
1 to V ′

2 in C ′ . Then the edges having opposite signs in C and C ′ are those 
joining V 1 ∩ V ′

2 and V 2 ∩ V ′
1, then, with V ′ = (V 1 ∩ V ′

2) ∪ (V 2 ∩ V ′
1), the cut defined by the partition (V ′, E \ V ′) contains a 

cocycle answering the problem.
Third, we recall the following easy property. Let A, B ⊆ E with A ∩ B = ∅, such that the minor G/B\A is connected (or 

equivalently: G/B\A has the same rank as G/B , that is, the same number of edges for a spanning forest). If D ′ is a cocycle 
of G/B\A, then there exists a unique cocycle D of G such that D ∩ B = ∅ and D \ A = D ′ . If the graphs are directed then D
has the same signs as D ′ on the elements of D ′ . We say that D ′ is induced by D , or that D induces D ′ . (In particular, when 
we consider a cocycle D of G inducing a cocycle D ′ of G(E ′) for some E ′ ⊆ E , it implies that D ′ = D ∩ E ′ is a cocycle of 
G(E ′), a property which is not true in general for any cocycle D of G .)

2.2. Bipolar orientations and fully optimal spanning trees

We say that a directed graph 
−→
G on the edge set E is bipolar with respect to p ∈ E if 

−→
G is acyclic and has a unique source 

and a unique sink which are the endpoints of p. For brevity, we might write bipolar w.r.t. p. In particular, if 
−→
G consists 

of a single edge p which is not a loop, then 
−→
G is bipolar w.r.t. p. Equivalently, 

−→
G is bipolar w.r.t. p if and only if G is 

acyclic and every edge lies on a directed path joining the endpoints of p. Equivalently, 
−→
G is bipolar w.r.t. p if and only 

if every edge of 
−→
G is contained in a directed cocycle and every directed cocycle contains p (that is, in other words, 

−→
G

has dual-orientation-activity 1 and orientation-activity 0, in the sense of [16]; see [11, Section 2.4] for more information). 
Observe that if 

−→
G is bipolar w.r.t. p, then 

−→
G has no loop, and 

−→
G has no coloop unless p is its only edge.

Definition 2.1. Let 
−→
G = (V , E) be a directed graph, on a linearly ordered set of edges, which is bipolar with respect to 

the minimal element p of E . The fully optimal spanning tree α(
−→
G ) of 

−→
G is the unique spanning tree T of G such that the 

following sign criterion is satisfied:

• for all b ∈ T \ p, the signs of b and min(C∗(T ; b)) are opposite in C∗(T ; b);
• for all e ∈ E \ T , the signs of e and min(C(T ; e)) are opposite in C(T ; e).

The existence and uniqueness of such a spanning tree, along with the next theorem, are the main results from [7,9]. 
Notice that a directed graph and its opposite are mapped onto the same spanning tree. We say that spanning tree T has 
internal activity 1 and external activity 0, or equivalently that T is uniactive internal, if: min(E) ∈ T ; for every t ∈ T \ min(E)

we have t �= min(C∗(T ; t)); and for every e ∈ E \ T we have e �= min(C(T ; e)).
In this paper, it is not necessary to define further the notion of activities of spanning trees, which comes from the theory 

of the Tutte polynomial (see [7,11,12]). For information (not used in the paper), the number of uniactive internal spanning 
trees of G does not depend on the linear ordering of E and is known as the β-invariant β(G) of G [3], while the number 
of bipolar orientations with respect to p does not depend on p and is equal to 2.β(G) [18].

Theorem 2.2 (Key Theorem [7,9]). Let G be a graph on a linearly ordered set of edges E with min(E) = p. The mapping 
−→
G → α(

−→
G )

yields a bijection between all bipolar orientations of G with respect to p, with the same fixed orientation for p, and all uniactive internal 
spanning trees of G.

The bijection of Theorem 2.2 is called the uniactive bijection of the ordered graph G .
For completeness of the paper (though not used thereafter), let us recall that, from the constructive viewpoint, this 

bijection was built in [7,9] by the inverse mapping, provided by a single pass algorithm over T and fundamental cocycles, 
or dually over E \ T and fundamental cycles. This algorithm is illustrated in [7, Figure 1], on the same example that we will 
use in Section 4. Equivalently, the inverse mapping can be obviously built by a single pass over E , choosing edge directions 
one by one so that the criterion of Definition 2.1 is satisfied. We recall this algorithm below (as done also in [9] and [11, 
Section 5.2]).

Proposition 2.3 (Self-dual reformulation of [7, Proposition 3]). Let G be a graph on a linearly ordered set of edges E = {e1, . . . , en}< . 
For a uniactive internal spanning tree T of G, the two opposite bipolar orientations of G whose image under α is T are computed by 
the following algorithm.
4
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Orient e1 arbitrarily.
For k from 2 to n do

if ek ∈ T then
let a = min(C∗(T ; ek))

orient ek so that a and ek have opposite signs in C∗(T ; ek)

if ek �∈ T then
let a = min(C(T ; ek))

orient ek so that a and ek have opposite signs in C(T ; ek)

Lastly, in the proof of the main result Theorem 4.3, we will use the following property of the fully optimal spanning 
tree, which is given by [7, Proposition 3] or by [9, Proposition 3.3] (and which can be used for an alternative formulation 
of Definition 2.1). Let 

−→
G = (V , E) be an ordered directed graph, which is bipolar w.r.t. p = min(E). Let T = α(

−→
G ). Recall 

the convention that an edge has a positive sign in its fundamental cycle or cocycle with respect to a spanning tree. With 
T = b1 < b2 < · · · < br , and with E \ T = {c1 < · · · < cn−r}, we have:

• b1 = p = min(E);
• for every 1 ≤ i ≤ r, all elements of C∗(T ; bi) \ ∪ j≤i−1C∗(T ; b j) are positive in C∗(T ; bi);
• for every 1 ≤ i ≤ n − r, all elements of C(T ; ci) \ ∪ j≤i−1C(T ; c j) are positive in C(T ; ci) except p = min(E).

Equivalently, as formulated in [9], in terms of compositions of signed subsets (see Section 2.1), the two latter properties can 
be formulated in the following way: C∗(T ; b1) ◦ · · · ◦ C∗(T ; br) is positive; and C(T ; c1) ◦ · · · ◦ C(T ; cn−r) is positive except on 
p.

3. Recursive construction by deletion/contraction

This section investigates a recursive deletion/contraction construction of the fully optimal spanning tree of an ordered 
bipolar digraph. Theorem 3.2 below is also stated in [11, Section 6.1]. For the sake of completeness, we give its (short) 
proof in both papers, including Lemma 3.1 below. In the present paper, we focus on developing computational remarks 
from these results (Remarks 3.4, 3.5, 3.6, 3.7 below). This construction is developed further in [11, Section 6] by giving 
deletion/contraction constructions involving all orientations and spanning trees (see [4,12] for generalizations to oriented 
matroids).

Lemma 3.1. Let 
−→
G be a digraph, on a linearly ordered set of edges E, which is bipolar w.r.t. p = min(E). Assume |E| > 1 and let ω be 

the greatest element of E. Let T = α(
−→
G ). If ω ∈ T then 

−→
G /ω is bipolar w.r.t. p and T \ {ω} = α(

−→
G /ω). If ω �∈ T then 

−→
G \ω is bipolar 

w.r.t. p and T = α(
−→
G \ω). In particular, we get that 

−→
G /ω is bipolar w.r.t. p or 

−→
G \ω is bipolar w.r.t. p.

Proof. First, let us recall that if a spanning tree of a directed graph satisfies the criterion of Definition 2.1, then this directed 
graph is necessarily bipolar with respect to its smallest edge. This is implied by [7, Propositions 2 and 3], or also stated ex-
plicitly in [9, Proposition 3.2], and this is easy to see: if the criterion is satisfied, then the spanning tree is internal uniactive 
(by definitions of internal/external activities) and the digraph is determined up to reversing all edges (see Proposition 2.3), 
which implies that the digraph is in the inverse image of T by the uniactive bijection of Theorem 2.2 and that it is bipolar 
with respect to its smallest edge.

Notice first that ω is not a loop nor a coloop of 
−→
G (otherwise 

−→
G would not be bipolar).

Assume that ω ∈ T . Obviously, the fundamental cocycle of b ∈ T \{ω} w.r.t. T \{ω} in G/ω is the same as the fundamental 
cocycle of b w.r.t. T in G . And the fundamental cycle of e �∈ T w.r.t. T \ {ω} in G/ω is obtained by removing ω from 
the fundamental cycle of e w.r.t. T in G . Hence, those fundamental cycles and cocycles in G/ω satisfy the criterion of 
Definition 2.1, hence 

−→
G /ω is bipolar w.r.t. p and T \ {ω} = α(

−→
G /ω).

Similarly (dually in fact), assume that ω �∈ T . The fundamental cocycle of b ∈ T w.r.t. T \ {ω} in G\ω is obtained by 
removing ω from the fundamental cocycle of b w.r.t. T in G . And the fundamental cycle of e �∈ T \ {ω} w.r.t. T \ {ω} in G\ω
is the same as the fundamental cycle of e w.r.t. T in G . Hence, those fundamental cycles and cocycles in G\ω satisfy the 
criterion of Definition 2.1, hence 

−→
G \ω is bipolar w.r.t. p and T \ {ω} = α(

−→
G \ω). �

Theorem 3.2. Let 
−→
G be a digraph, on a linearly ordered set of edges E, which is bipolar with respect to p = min(E). The fully optimal 

spanning tree α(
−→
G ) of 

−→
G satisfies the following inductive definition, where ω = max(E).

If |E| = 1 then α(
−→
G ) = ω.

If |E| > 1 then:

If −→
G /ω is bipolar w.r.t. p but not −→

G \ω then α(
−→
G ) = α(

−→
G /ω) ∪ {ω}.

If −→
G \ω is bipolar w.r.t. p but not −→

G /ω then α(
−→
G ) = α(

−→
G \ω).
5
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If both −→
G \ω and −→

G /ω are bipolar w.r.t. p then:

let T ′ = α(
−→
G \ω), C = C−→

G
(T ′; ω) and e = min(C);

if e and ω have opposite directions in C then α(
−→
G ) = α(

−→
G \ω);

if e and ω have the same directions in C then α(
−→
G ) = α(

−→
G /ω) ∪ {ω}.

or equivalently:

let T ′′ = α(
−→
G /ω), D = C∗−→

G
(T ′′ ∪ ω; ω) and e = min(D);

if e and ω have opposite directions in D then α(
−→
G ) = α(

−→
G /ω) ∪ {ω};

if e and ω have the same directions in D then α(
−→
G ) = α(

−→
G \ω).

Proof. By Lemma 3.1, at least one minor among {−→G /ω, 
−→
G \ω} is bipolar w.r.t. p. If exactly one minor among {−→G /ω, 

−→
G \ω}

is bipolar w.r.t. p, then by Lemma 3.1 again, the above definition is implied. Assume now that both minors are bipolar w.r.t. 
p.

Consider T ′ = α(
−→
G \ω). Fundamental cocycles of elements in T ′ w.r.t. T ′ in 

−→
G are obtained by removing ω from those 

in 
−→
G \ω. Hence they satisfy the criterion from Definition 2.1. Fundamental cycles of elements in E \ (T ′ ∪ {ω}) w.r.t. T ′ in −→

G are the same as in 
−→
G \ω. Hence they satisfy the criterion from Definition 2.1. Let C be the fundamental cycle of ω w.r.t. 

T ′ . If e and ω have opposite directions in C , then C satisfies the criterion from Definition 2.1, and α(
−→
G ) = T ′ . Otherwise, 

we have α(
−→
G ) �= T ′ , and, by Lemma 3.1, we must have α(

−→
G ) = α(

−→
G /ω) ∪ {ω}.

The second condition involving T ′′ = α(
−→
G /ω) is proved in the same manner. Since it yields the same mapping α, then 

this second condition is actually equivalent to the first one, and so it can be used as an alternative. Note that the fact that 
these two conditions are equivalent is difficult and proved here in an indirect way (actually this fact is equivalent to the key 
result that α yields a bijection); see Remark 3.7. �
Corollary 3.3. Using the notation of Theorem 3.2, if −ω

−→
G is bipolar w.r.t. p then the above algorithm of Theorem 3.2 builds at the 

same time α(
−→
G ) and α(−ω

−→
G ), and we have:

{
α(

−→
G ), α(−ω

−→
G )

}
=

{
α(

−→
G \ω), α(

−→
G /ω) ∪ {ω}

}
.

Also, we have that −ω
−→
G is bipolar w.r.t. p if and only if 

−→
G \ω and 

−→
G /ω are bipolar w.r.t. p.

Proof. Direct by Theorem 3.2 and Theorem 2.2 (bijection property). �
Remark 3.4 (Exponential computational complexity for one image). The algorithm of Theorem 3.2 is exponential time, as it may 
involve an exponential number of minors. Indeed, in general, one needs to compute both α(

−→
G \ω) and α(

−→
G /ω) in order 

to compute α(
−→
G ) (because one might compute T ′ = α(

−→
G \ω) and finally set α(

−→
G ) = α(

−→
G /ω) ∪ {ω}, or equivalently one 

might compute T ′′ = α(
−→
G /ω) and finally set α(

−→
G ) = α(

−→
G \ω)). Hence, in general, one may need to compute α(

−→
G \ω\ω′), 

α(
−→
G \ω/ω′), α(

−→
G /ω\ω′) and α(

−→
G /ω/ω′), with ω′ = max(E\{ω}), and so on... Finally, with |E| = n, the number of calls 

to the algorithm to build α(
−→
G ) is O (20 + 21 + . . . + 2n−1), that is, O (2n). In contrast, the algorithm provided in Section 4

involves a linear number of minors (and yields a polynomial time algorithm; see Theorem 4.10). However, the algorithm 
of Theorem 3.2 is efficient in terms of computational complexity for building the images of all bipolar orientations of G at 
once, see Remark 3.5 below.

Remark 3.5 (Efficient computational complexity for building the whole bijection at once). Let us explain how the algorithm of 
Theorem 3.2 allows to build the O (2n) images of all bipolar orientations in just O (n.2n) steps. By Corollary 3.3, the con-
struction of Theorem 3.2 can be used to build the whole active bijection for G (i.e., the 1 − 1 correspondence between all 
bipolar orientations of G w.r.t. p with fixed orientation, and all spanning trees of G with internal activity 1 and external ac-
tivity 0), from the whole active bijections for G/ω and G\ω. For each pair of bipolar orientations {−→G , −ω

−→
G }, the algorithm 

provides which “choice” is right to associate one orientation with the orientation induced in G/ω and the other with the 
orientation induced in G\ω. We mention that this “choice” notion is developed further in [11, Section 6] (and [14]) as the 
basic component for a deletion/contraction framework. This ability to build the whole bijection at once is interesting from a 
structural viewpoint, but also from a computational complexity viewpoint. Indeed, with |E| = n, the number of calls to the 
algorithm to build one image is O (2n) (see Remark 3.4), but the number of calls to the algorithm to build the O (2n) images 
of all bipolar orientations in the above way is just O (n.2n). In detail, by the choice process described above, in order to 
handle all (bipolar) orientations of G , one considers (at most) all orientations of G/ω and G\ω, that is, 2n−1 × 2 digraphs. 
To this end, one considers (at most) all orientations of G\ω\ω′ , G\ω/ω′ , G/ω\ω′ and G/ω/ω′ , with ω′ = max(E\{ω}), that 
is, 2n−2 × 4 digraphs, and so on... So, with E = e1 < . . . < en , the choice process described above amounts to consider (at 
most) every orientation of every graph of the form G/A\A′ where A ∩ A′ = ∅ and A ∪ A′ = {ei, . . . , en} for 2 ≤ i ≤ n, that is, 
6



E. Gioan and M. Las Vergnas Discrete Mathematics 347 (2024) 113895
2n−i+1 × 2i−1 digraphs, for 2 ≤ i ≤ n. Globally, we thus use O (2n−1 × 21 + 2n−2 × 22 + . . .+ 22 × 2n−2 + 21 × 2n−1) = O (n.2n)

elementary steps to build the O (2n) images.

Remark 3.6 (Connection with linear programming). As the full optimality notion strengthens linear programming optimality 
(see Section 1 and Remark 4.7), the deletion/contraction algorithm of Theorem 3.2 corresponds to a refinement of the 
classical linear programming solving by constraint/variable deletion; see [6,13].

Remark 3.7 (Non-trivial equivalence in Theorem 3.2). The equivalence of the two formulations in the algorithm of Theorem 3.2
is a deep result, difficult to prove if no property of the computed mapping is known. Here, to prove it, we implicitly use 
that α is already well-defined by Definition 2.1, and bijective for bipolar orientations (Key Theorem 2.2). But if one defines a 
mapping α from scratch as in the algorithm (with either one of the two formulations) and then investigates its properties, 
then it turns out that the above equivalence result is equivalent in some way to the existence and uniqueness of the fully 
optimal spanning tree as defined in Definition 2.1. See [14] for details.

4. Direct computation by optimization

This section gives a direct and efficient construction of the fully optimal spanning tree of an ordered bipolar digraph, 
in terms of an optimization based on a linear ordering of cocycles in a minor for each edge of the resulting spanning 
tree (Theorem 4.3). It is completely independent of Section 3. This construction is an adaptation for graphs of a general 
construction by elaborations on linear programming detailed for oriented matroids in [12] (see Section 1 and Remark 4.7). 
In this paper, a translation of the notion of optimal cocycle in terms of linear programming is only used in the proof of 
Lemma 4.9 to ensure that a polynomial time algorithm can be used. In this way, the computation of the fully optimal 
spanning tree can be performed in polynomial time (Theorem 4.10). The question of relating the present setting to a usual 
setting in the digraph field is addressed in Remark 4.11.

Lemma 4.1. Let G be a graph. Given a spanning tree T of G and U ⊆ T , there exists at most one cocycle C of G such that C ∩ T = U . 
Given a spanning tree T of G and two cocycles C and D of G, there exists f ∈ T belonging to C�D.

Proof. Let us prove the first claim. Assume such a cocycle C exists. Then it is defined by a partition of the set of vertices 
of G into two sets A and B , such that G[A] and G[B] are connected (since C is minimal by inclusion). Each connected 
component of T \ U is contained either in G[A] or in G[B]. On the other hand, if an edge e = (x, y) is in U then it is 
in C and has an endpoint in G[A] and the other in G[B]. Hence, as T is spanning, the partition into the sets A and B
is completely determined by T and U , which implies the uniqueness of C . Now, let us prove the second claim. Assume 
T ∩ (C�D) = ∅, then we have T ∩ C ⊆ D and T ∩ D ⊆ C , so T ∩ C = T ∩ D = T ∩ C ∩ D , which is a contradiction with the 
first claim for U = T ∩ C = T ∩ D . �
Definition 4.2. We define an optimizable digraph to be a connected digraph 

−→
G = (V , E ∪ F ), possibly with E ∩ F �= ∅, given 

with:

• an edge p ∈ E \ F called the infinity edge;
• a subset E of edges called the ground set, such that the digraph 

−→
G (E) is connected and acyclic;

• a linearly ordered subset F of edges called the objective set, such that F ∪ {p} is a spanning tree of G .

Given an optimizable digraph 
−→
G as defined above, we define a linear ordering for the signed cocycles of 

−→
G containing p as 

follows. Let C and D be two signed cocycles (see Section 2.1) of 
−→
G containing p. By Lemma 4.1, since F ∪ {p} is a spanning 

tree of G , there exists an element of F that belongs to C�D . Let f be the smallest element of F such that either f belongs 
to C�D , or f belongs to C ∩ D and has opposite signs in C and D . If f is positive in C or negative in D then set C > D . If 
f is negative in C or positive in D then set D > C .

Equivalently, we set C > D if f is a positive element of C and not an element of D , or f is a positive element of C and a 
negative element of D , or f is not an element of C and a negative element of D , where f is the smallest possible element 
of F that allows for setting C < D or D < C in this way.

Equivalently, it is easy to see that this ordering is provided by the weight function w on signed cocycles of G defined as 
follows. Let us denote the elements of F by f2 < · · · < fr , and let us denote by f i or f i , for 2 ≤ i ≤ r, the element with a 
positive or negative sign, respectively. For 2 ≤ i ≤ r, set w( f i) = 2r−i and w( f i) = −2r−i , and set w(e) = 0 if e ∈ E \ F . Then 
define the weight w(C) of a signed cocycle C as the sum of weights of its elements. The above linear ordering is given by: 
C > D if and only if w(C) > w(D).

We define the optimal cocycle of 
−→
G as the maximal signed cocycle of 

−→
G containing p with positive sign, and inducing a 

directed cocycle of 
−→
G (E). It exists since 

−→
G (E) is acyclic, and it is unique since the ordering is linear.
7
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Theorem 4.3. Let 
−→
G = (V , E) be an ordered bipolar digraph with respect to p = min(E). The fully optimal spanning tree α(

−→
G ) =

p < t2 < · · · < tr is computed by the following algorithm. (The two comments inserted below state important properties and help to 
follow what is built in the algorithm.)

(1) Initialize −→
G as the optimizable digraph given by:
• the infinity edge p
• the ground set E
• the objective set F = f2 < · · · < fr where p < f2 < · · · < fr is the smallest lexico-
graphic spanning tree of −→

G (and the linear ordering on F is induced by the 
linear ordering on E).

(2) For i from 2 to r do:

(2.1) Let Copt be the optimal cocycle of −→
G .

First comment/property: Copt is the cocycle induced in the current digraph −→G by the fundamental cocycle of the element ti−1 (computed at the 
previous step, with t1 = p) w.r.t. the fully optimal spanning tree of the initial digraph.

(2.2) Let

ti = min(E \ Copt)

Second comment/property: the i-th edge ti of α(
−→
G ) is the smallest edge not contained in fundamental cocycles of smaller edges w.r.t. α(

−→
G ) (this is 

because the spanning tree α(
−→
G ) is internal uniactive).

(2.3) Let

p′ = ti

(2.4) Let

E ′ = E \ Copt

(2.5) If p′ ∈ F then let F ′ = F \ {p′}, and if p′ �∈ F then let:

F ′ = F \ max
(

F ∩ CG

(
F ∪ {p}; p′

) )
.

Equivalently, F ′ is obtained by removing from F the greatest possible element such 
that the following property holds:

p′ �∈ F ′ and F ′ ∪ {p′} is a spanning tree of the minor
−→
G

′
defined below.

(2.6) Set

−→
G

′ = −→
G ( E ′ ∪ F ′ ∪ {p} ) / {p}

as the optimizable digraph given by:
• the infinity edge p′
• the ground set E ′
• the objective set F ′

(2.7) Update −→
G ← −→

G
′
; p ← p′; E ← E ′; F ← F ′.

(3) Output

α(
−→
G ) = p < t2 < · · · < tr.

Example 4.4. Theorem 4.3 might seem rather technical in a pure graph setting, so let us first illustrate it on an example 
before proving it. Let us apply the algorithm of Theorem 4.3 to the same example as in [7], where it illustrated the inverse 
algorithm. The steps of the algorithm are depicted on Fig. 1. The output is depicted on Fig. 2. One can keep in mind that the 
successive optimal cocycles built in the algorithm correspond to the fundamental cocycles with respect to the successive 
edges of the fully optimal spanning tree (cf. first comment/property in the algorithm; see details in Property (P2i) in the 
proof of Theorem 4.3 below).

— Computation of t2 . Initially 
−→
G = −→

G 1 is a digraph with set of edges E = {1 < 2 < 3 < 4 < 5 < 6 < 7 < 8}. The minimal 
spanning tree is {1 < 2 < 3 < 6}. Hence p = 1 and F = 236. The linearly ordered directed cocycles of 

−→
G 1 containing p = 1

are: 123 > 1246 > 1358 > 14568 > 1457. The maximal is Copt = 123 (which is equal, at this first step, to the smallest 
directed cocycle for the lexicographic ordering; see Proposition 4.12 below). We get t2 = min(E \ Copt) = 4.
8
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Fig. 1. Illustration for Example 4.4. The digraph −→G = −→
G 1 is on the left, the digraph −→G 2 = −→

G 1/1\3 is in the middle, and the digraph −→G 3 = −→
G 2/4\2 is on 

the right. At each step: the boldest edge is p, the other bold edges form the set F , and the dashed edges are in F but no more in E (their labels are in 
brackets).

Fig. 2. The fully optimal spanning tree α(
−→
G ) = 1457 of the digraph

−→
G of Fig. 1 (the same as in [7]).

— Computation of t3 . We now consider the optimizable digraph 
−→
G 2 = −→

G 1/{1}\{3} given with p = 4, E = 45678, and F = 26
(the edge 3 is deleted as the greatest belonging to the circuit 134 and to the previous F = 236). The linearly ordered signed 
cocycles of 

−→
G 2 positive on E and containing p = 4 are: 46 > 2457 (where the bar upon elements represents negative 

elements). The maximal is Copt = 46. We get t3 = min(E \ Copt) = 5.

— Computation of t4 . We now consider the optimizable digraph 
−→
G 3 = −→

G 2/{4}\{2} given with p = 5, E = 578, and F = 6
(the edge 2 is deleted as the greatest belonging to the circuit 25 and to the previous F = 26). The linearly ordered signed 
cocycles of 

−→
G 3 positive on E and containing p = 5 are: 58 > 567. The maximal is Copt = 58. We get t4 = min(E \Copt) = 7.

— Output. We get finally α(
−→
G ) = 1457 (and one can check that the fundamental cocycles C∗(1457; 1) = 123, C∗(1457; 4) =

346, and C∗(1457; 5) = 258 induce the successive optimal cocycles 123, 46 and 58 in the successive considered minors).

Notation for what follows. The proof of Theorem 4.3 is given below, after two lemmas. In all this framework, we will use 
the following notation. We denote by 

−→
G , 

−→
G

′
, etc., the variables as they are used during the algorithm, meaning they are 

considered at any given step of the algorithm with their current value. We denote by 
−→
G 1 the initial optimizable digraph −→

G , and 
−→
G i the variable optimizable digraph 

−→
G updated at step (2.7) with respect to variable i, with parameters pi = ti as 

p, Ei as E and Fi as F , for all 1 ≤ i ≤ r.

Lemma 4.5. The algorithm of Theorem 4.3 is well-defined.

Proof. We shall prove by induction that, at the beginning of each stage, the digraph 
−→
G is well-defined as an optimizable 

digraph. Initially, the optimizable digraph 
−→
G = −→

G 1 is obviously well defined. One has thus to check that the optimizable 
digraph 

−→
G

′
defined at each call to step (2.6) is well-defined, assuming by the induction hypothesis that 

−→
G is an optimizable 

digraph. First, 
−→
G (E) is connected, and Copt is a cocycle of 

−→
G inducing a cocycle of 

−→
G (E). Also, we have p ∈ Copt by 

definition of Copt, and we have E ′ = E \ Copt by step (2.4). Hence p is the unique edge in E ′ ∪ {p} joining the two connected 

components of 
−→
G (E ′). Hence 

−→
G (E ′ ∪ {p})/{p} is connected, and so is 

−→
G

′
(E ′) (implying that 

−→
G

′
is also connected as they 

have the same vertices).
By definition at steps (2.2)(2.3)(2.4), we have p′ = min(E ′), and by definition of F ′ at step (2.5), we have p′ �∈ F , hence 

p′ ∈ E ′ \ F ′ , as required for an optimizable digraph. Since F ∪ {p} is a spanning tree of 
−→
G , then F is a spanning tree of −→

G
′
, and, by definition of F ′ at step (2.5), F ′ ∪ {p′} is a spanning tree of 

−→
G

′
, as required for an optimizable digraph. By 

assumption, at each call to step (2.6), the digraph 
−→
G (E) is acyclic. Since Copt is a cocycle of 

−→
G with p ∈ Copt as above, 

then 
−→
G (E ′ ∪ {p}) is also acyclic, and so is 

−→
G

′
(E ′), as required for an optimizable digraph. �

Lemma 4.6. At any step of the algorithm of Theorem 4.3, the following invariant is maintained: the smallest element of every cocycle 
of G belongs to F ∪ {p}, and this element is equal to the smallest element of the cocycle of G1 inducing this cocycle (in the minor G of 
G1; see Section 2.1).
9
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Proof. The property is true at the initial step since F ∪ {p} = F1 ∪ {p1} is defined as the smallest spanning tree of G = G1. 
Assume it is true for G , we want it true also for G ′ as defined at step (2.6). Let D ′ be a cocycle of G ′ . By construction, 
G ′ = G\A/{p} for some set A such that G ′ is connected, so there exists a cocycle D of G inducing D ′ , such that p �∈ D and 
D \ A = D ′ (see Section 2.1). Since F ∩ A = F \ (E ′ ∪ F ′ ∪ {p}) by definition of G ′ , and F \ F ′ contains exactly one element f by 
definition of F ′ at step (2.5), then F ∩ A contains at most this element f . By the induction hypothesis, we have min(D) ∈ F . 
By definition of D , we have D \ A = D ′ . Assume for a contradiction that min(D ′) �= min(D). Then min(D) ∈ A ∩ F , implying 
F ∩ A = { f } and min(D) = f . There are two cases for defining f at step (2.5). In the first case, we have f = p′ = min(E ′) ∈ F , 
which implies f ∈ E ′ and which contradicts { f } = F ∩ A = F \ (E ′ ∪ F ′ ∪ {p}). In the second case, f is defined as the greatest 
element of the unique cycle C of G contained in F ∪ {p, p′}. In this case, let f ′ ∈ D ∩ C . We have f ′ ≤ f since f ′ ∈ C and 
the greatest element of C is f . And we have f ′ ≥ f since f ′ ∈ D and min(D) = f . Hence f ′ = f , and we have proved 
D ∩ C = { f }, which contradicts the orthogonality of the cycle C and the cocycle D (see Section 2.1).

So we have min(D ′) = min(D). Since the cocycle D1 of G1 inducing D in G also induces D ′ in G ′ , and since min(D) =
min(D1) by the induction hypothesis, we get min(D ′) = min(D1).

Finally, if min(D ′) �∈ F ′ , since min(D ′) = min(D) ∈ F , then min(D ′) = f . As above, there are two cases for defining f at 
step (2.5). In the first case, we have f = p′ = min(E ′), hence min(D ′) = f ∈ F ′ ∪ {p′}, which is the property that we have 
to prove. In the second case, we have min(D) = f and the same argument as above leads again to C ∩ D = { f } and to the 
same contradiction. The invariant is now proved. �
Proof of Theorem 4.3. The present proof is a condensed but complete version for graphs of the general geometric proof 
that will be given in [13], making use of the linear ordering of cocycles defined above (which is possible in graphs but not 
in general; see Remark 4.7). We will extensively use the notion of cocycle induced in a minor of a graph by a cocycle of 
this graph; see Section 2.1. Since 

−→
G 1 is bipolar, its fully optimal spanning tree α(

−→
G 1) exists and satisfies the properties 

recalled in Section 2.2. By Lemma 4.5, the algorithm given in the theorem statement is well defined. Now, we have to 
prove that α(

−→
G 1) is necessarily equal to the output of this algorithm. The proof consists of proving by induction that, 

for every 2 ≤ i ≤ r, the two following properties (P1i) and (P2i ) are true. The property (P1i) for 2 ≤ i ≤ r means that 
the algorithm actually returns α(

−→
G 1). The property (P2i) for 2 ≤ i ≤ r means that the optimal cocycles computed in the 

successive minors are actually induced by the fundamental cocycles of the fully optimal spanning tree α(
−→
G 1). (This is the 

first comment/property in the algorithm statement.) Then, the proof is not long but rather technical. Let us denote the fully 
optimal spanning tree of 

−→
G 1 by T = α(

−→
G 1) = {b1 < . . . < br}. We already know that b1 = min(E).

• (P1i ) We have bi = ti , where ti is defined at step (2.2) of the algorithm and bi is the i-th element of T = α(
−→
G 1).

• (P2i ) The optimal cocycle Copt of 
−→
G i−1 , defined at step (2.1) of the algorithm equals the cocycle denoted by Ci−1 of 

−→
G i−1 induced 

by the fundamental cocycle C∗(T ; bi−1) of pi−1 = ti−1 = bi−1 w.r.t. T in
−→
G 1 , that is: Ci−1 = C∗(T ; bi−1) ∩ (Ei−1 ∪ Fi−1), where 

(Ei−1 ∪ Fi−1) is the edge set of 
−→
G i−1 .

First, observe that Ci−1 is a well defined induced cocycle in property (P2i ) as soon as (P1 j ) is true for all j < i − 1

(implying t j = b j ), since b j �∈ C∗(T ; bi−1) for j < i − 1 and 
−→
G i−1 = −→

G 1/{p1, t2, . . . , ti−2} \ A for some A.
Second, let 2 ≤ k ≤ r. Assume that the property (P2i ) is true for all 2 ≤ i ≤ k and the property (P1i ) is true for all 

2 ≤ i ≤ k − 1. Then we directly have that the property (P1i) is also true for i = k. Indeed, as shown in [7, Proposition 2]
(that can be proved easily), the fact that the spanning tree T = b1 < b2 < · · · < br has external activity 0 implies that, for all 
1 ≤ i ≤ r, we have bi = min

(
E \ ∪ j≤i−1C∗(T ; b j)

)
. (This is the second comment/property in the algorithm statement.) So we 

have bk = min(Ek−1 \ Ck−1) = · · · = min(E1 \ ∪ j≤k−1C j) = min(E1 \ ∪ j≤k−1C∗(T ; b j)), and so we have tk = bk .
Now, it remains to prove that, under the above assumption, the property (P2i) is true for i = k + 1. Consider Copt, 

denoting the optimal cocycle of 
−→
G k , and Ck , denoting the cocycle of 

−→
G k induced by the fundamental cocycle of pk = tk = bk

w.r.t. T in
−→
G 1. Assume for a contradiction that Copt �= Ck .

Since properties (P1i) and (P2i ) are true for all 2 ≤ i ≤ k by assumption, and reformulating definition of 
−→
G

′
at step (2.6), 

we have:
−→
G k = −→

G k−1/{bk−1} \
(

Ck−1 \ (Fk ∪ {bk−1})
)

= −→
G k−1/{bk−1} \

(
C∗(T ;bk−1) \ (Fk ∪ {bk−1})

)

and hence, inductively, we have:
−→
G k = −→

G 1/{b1, . . . ,bk−1}\A

where A is the union of all fundamental cocycles of bi w.r.t. T for 1 ≤ i ≤ k − 1 minus Fk ∪ {b1, . . . , bk−1}. That is:

A =
( ⋃

C∗(T ;bi)
)

\
(

Fk ∪ {b1, . . . ,bk−1}
)
.

1≤i≤k−1

10
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In particular, we have Ck = C∗(T ; bk) \ A. And we also have A ∩ T = ∅.
As recalled in Section 2.2, the definition of T implies that Ck is positive on Ek , that is, positive except maybe on elements 

of Fk \ Ek , just the same as Copt. By assumption and property (P1), we have bk = tk = min(Ek). Then, by definition of 
Ck = C∗(T ; bk) ∩ (Ek ∪ Fk), we have bk ∈ Ck . Hence, the cocycle Ck has been taken into account in the linear ordering of 
cocycles of the optimizable digraph 

−→
G k defining Copt. So Copt > Ck in this linear ordering by definition of Copt.

By the definition of this linear ordering, we may choose f to be the smallest element of Fk with the property of being 
positive in Copt and not belonging to Ck , or positive in Copt and negative in Ck , or not belonging to Copt and negative in Ck . 
The edge f does not have opposite signs in Copt and −Ck . So let D ′ be a cocycle of 

−→
G k obtained by elimination between 

Copt and −Ck preserving f (see Section 2.1). Necessarily, f is positive in D ′ by the definition of f . By the definitions of 
Copt and Ck , the element bk is positive in Copt and in Ck . Moreover, by the definition of f , every edge in F smaller than 
f belonging to Copt (or to Ck) also belongs to Ck (or to Copt, respectively) with the same sign. Hence, by properties of 
elimination, the cocycle D ′ does not contain bk nor any element of F smaller than f belonging to Copt or Ck . Since the 
smallest edge in D ′ belongs to F ∪ {bk}, as shown by the invariant of Lemma 4.6, and since we have bk �∈ D ′ , then we 
have min(D ′) = f . The negative elements of D ′ are either elements of Fk \ Ek , or elements of Ck \ {bk}. In the first case, 
since Ek = E1 \ A, the negative elements belong to Fk ∩ A ⊆ A ⊆ E1 \ T . In the second case, the negative elements also 
belong to E1 \ T by definition of a fundamental cocycle. Finally, let D be the cocycle of 

−→
G 1 inducing D ′ in 

−→
G k , such that 

D ∩ {b1, . . . , bk} = ∅ and D \ A = D ′ . The negative elements of D belong to A or are negative in D ′ , then, in every case, they 
belong to E1 \ T . Moreover, as shown by the invariant of Lemma 4.6, we have min(D) = min(D ′) = f .

So we have built a cocycle D such that:

(i) D ∩ {b1, . . . , bk} = ∅
(ii) min(D) = f

(iii) f is positive in D
(iv) the negative elements of D are in E1 \ T

In a first case, we assume that f �∈ T . Let us use the notation E1 \ T = {c1 < · · · < cn−r}, as at the end of Section 2. Then 
f = c j for some c j ∈ E1 \ T . Let C = C(T ; c1) ◦ · · · ◦ C(T ; c j). As recalled at the end of Section 2, this composition of cycles 
has only positive elements except the first one p1 = b1. The edge f is positive in C and D , hence, by orthogonality (see 
Section 2.1), there exists an edge e ∈ C ∩ D with opposite signs in C and D . We have b1 �∈ D , hence e �= b1, and hence e
is positive in C and negative in D . Hence e ∈ E1 \ T . Since e ∈ C , we must have e = ci for some i ≤ j, that is, e ≤ f . But 
f = min(D) implies e = f , which is a contradiction.

In a second case, we assume that f ∈ T . Let a = min
(
C∗(T ; f )). Since f ∈ F , we have f �= min(E1), and so f �= a by 

definition of T , so we have a �∈ T . Then a = c j for some c j ∈ E1 \ T . Let C = C(T ; c1) ◦ · · · ◦ C(T ; c j), which has only positive 
elements except the first one p1 = b1. Since a ∈ C∗(T ; f ), we have f ∈ C(T ; c j). As above, by orthogonality, the edge f
positive in C and D , together with p1 �∈ D , implies an edge e ∈ C ∩ D positive in C and negative in D . So e ∈ E1 \ T , and 
so e = ci for some i ≤ j, so e ≤ a, which implies e ≤ f by definition of a, leading to the same contradiction as above with 
f = min(D).

We obtained a contradiction after assuming that Copt �= Ck . So we proved Copt = Ck , which ends the proof of property 
(P2i ) for i = k + 1, and ends the proof of properties (P1i ) and (P2i ) by induction for all 2 ≤ i ≤ r. �
Remark 4.7 (Linear programming). As mentioned in Section 1, the algorithm of Theorem 4.3 can be seen as an elaboration 
on linear programming, available more generally in oriented matroids or real hyperplane arrangements. In this setting, we 
actually optimize a sequence of nested faces (corresponding to the sequence of fundamental cocycles of the fully optimal 
spanning tree, that is, to the sequence of optimal cocycles in the above algorithm, a process that we call flag programming), 
each with respect to a sequence of objective functions (the linearly ordered objective set in the above algorithm, a process 
called lexicographic multiobjective programming, see Lemma 4.9). This yields a unique fully optimal basis for any bounded 
region. This refines standard linear programming where just one vertex is optimized with respect to just one objective 
function. However, this can be computed inductively using standard pseudo/real linear programming. See Section 1 for 
references.

Lemma 4.8. For each optimizable digraph 
−→
G considered in the algorithm of Theorem 4.3, the following property is satisfied. If C is a 

signed cocycle of 
−→
G , such that C induces a positive directed cocycle of 

−→
G (E) and such that p �∈ C , then min(F ∩ C) has a negative sign 

in C.

Proof. We prove the result by induction. The result is trivially true for the initial 
−→
G = −→

G 1 as it is a bipolar digraph w.r.t. 
p whose edge-set is E , hence all its positive directed cocycles contain p. Now we assume that the result is true for 

−→
G , and 

we prove that it is true for 
−→
G

′
defined at step (2.6). Assume for a contradiction that C ′ is a signed cocycle of 

−→
G

′
, such 

that C ′ induces a positive directed cocycle of 
−→
G

′
(E ′), p′ �∈ C ′ , and f ′ = min(F ′ ∩ C ′) is positive in C ′ . Let C be the cocycle of −→

G inducing C ′ in the minor 
−→
G

′
of 

−→
G (defined at the end of Section 2.1).
11
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Let us first prove that f ′ = min(F ∩ C). By the definitions of 
−→
G

′
and C , we have p �∈ C and C ′ = C ∩ (E ′ ∪ F ′), so C ′ ∩ F ′ =

C ∩ F ′ . By the definition of F ′ at step (2.5), we have either F ′ = F \ {p′} or F ′ = F \ { f } where f is the greatest element 
of the unique cycle C(F ∪ {p}; p′) contained in F ∪ {p, p′}. In the first case, since p′ �∈ C ′ , we have C ′ ∩ F ′ = C ∩ F , hence 
f ′ = min(F ∩ C). In the second case, we have C ′ ∩ F ′ = (C ∩ F ) \ { f }. This implies f ′ = min(C ∩ F ) unless f = min(C ∩ F ). 
In the latter case, consider an element e ∈ C ∩ C(F ∪ {p}; p′). Then e ≤ f by definition of f . Furthermore, we have e ∈ C ∩ F
since p �∈ C and p′ �∈ C , hence f ≤ e by f = min(C ∩ F ). So we get e = f , and thus the cocycle C and the cycle C(F ∪{p}; p′)
intersect on one only edge, which is impossible. Finally, we have proven that f ′ = min(F ∩ C).

Now, let us consider the optimal cocycle Copt of 
−→
G . As a cocycle, it is the set of edges joining the two parts A and B

of a partition of the vertex set of 
−→
G , and deleting Copt thus disconnects the graph 

−→
G in two connected components 

−→
G [A]

and 
−→
G [B]. By assumption, C ′ induces a cocycle of 

−→
G

′
(E ′). Since 

−→
G

′
(E ′) = −→

G (E ′ ∪ {p})/{p} with E ′ = E \ Copt and p ∈ Copt, 
the cocycle induced by C ′ in 

−→
G (E ′) is a cocycle for one of the two above connected components. Without loss of generality, 

we can assume that it joins two parts B1 and B2 of B , and that the endpoints of p are in A and B1. For convenience, we 
will also assume that p is directed from A to B1, but the reasoning below can be done in the same way when p is directed 
from B1 to A by reversing all considered directions.

The cocycle C ′ of 
−→
G

′
is induced by the cocycle C of 

−→
G , so that, in 

−→
G , we have the following situation: Copt is the 

cocycle joining A and B1 ∪ B2, with all edges in E directed from A to B1 ∪ B2, and C is the cocycle joining A ∪ B1 and B2, 
with C ∩ E ′ joining B1 and B2.

By the definition of C , we have p �∈ C and f ′ is positive in C . Since f ′ = min(F ∩ C) (as shown above), the cocycle C

cannot induce a directed cocycle of 
−→
G (E), otherwise it would be a contradiction with the induction hypothesis. So there 

exists e ∈ E with negative sign in C . Since C ′ induces a positive directed cocycle of 
−→
G

′
(E ′), we must have e �∈ E ′ . Then e

must join A and B2. Since e is directed from A to B2 (as p is directed from A to B), we thus have that all edges in C ∩ E ′
are directed from B2 to B1 (their sign is opposite to the sign of e in C ).

Now let us consider the cocycle D joining A ∪ B2 and B1. We have D = Copt�C , and D ∩ E ′ = C ∩ E ′ . In particular, D
contains p, all its edges in E \ E ′ are directed from A to B1 (as in Copt), and all its edges in E ′ are directed from B2 to B1

(as in C ). It thus induces a positive directed cocycle of 
−→
G (E) containing p. Let f be an edge in Copt smaller than f ′ (if it 

exists). Since f ′ = min(C ∩ F ) (as shown above), the edge f does not belong to C , hence it joins A and B1, hence it belongs 
both to Copt and D , with the same sign in both. The edge f ′ belongs to C ′ , hence it is joins B1 and B2, and it is positive in 
C ′ (by our initial assumption), hence it is directed from B2 to B1, and it does not belong to Copt. So, finally, by definition 
of the ordering of directed cocycles of 

−→
G (E) containing p, we have Copt < D , which is a contradiction with the definition 

of the optimal cocycle Copt. �
Lemma 4.9. Let 

−→
G = (V , E ∪ F ) be an optimizable digraph satisfying the property stated in Lemma 4.8. Then its optimal cocycle can 

be computed in polynomial time.

Proof. This proof is based on geometry and linear programming. It consists of translating the notion of optimal cocycle in 
terms of lexicographic multiobjective linear programming, which can be solved in polynomial time by numerical methods. 
We detail the construction and the geometric translation for the convenience of a reader not familiar with such a setting. 
(The construction is also a special case of a general construction for oriented matroids detailed in [13]; see Remark 4.7.)

Let us first recall the classical representation of a directed graph as a signed real hyperplane arrangement (which is 
usual in terms of oriented matroids, see for instance [2, Chapter 1]). Consider an optimizable digraph 

−→
G = (V , E ∪ F ). 

First, consider the vector space R|V | generated by variables xi , i ∈ V . Each undirected edge (u, v) of 
−→
G is identified to the 

hyperplane xv − xu = 0 of the real vector space R|V |−1 which is orthogonal to (1, . . . , 1) in R|V | . Specifying the direction 
of the edge from u to v amounts to specifying a positive halfspace xv − xu > 0 and a closed positive halfspace xv − xu ≥ 0. 
Second, consider the infinity edge p, its associated hyperplane in R|V |−1, and an affine hyperplane called H parallel to this 
hyperplane in its positive halfspace. The intersections of hyperplanes of R|V |−1 with H thus form a set of affine hyperplanes 
of the ambient affine space H ∼R|V |−2. Each edge except p corresponds to an affine hyperplane of H . (We can assume that 
no edge in 

−→
G is parallel to p, otherwise it can be ignored as it does interfere with the construction.) Finally, in this affine 

representation, we call points the 0-dimensional faces obtained as hyperplane intersections, and they exactly correspond to 
signed cocycles of 

−→
G containing p with positive sign. The sign of an edge in a cocycle is positive if and only if the point 

corresponding to the cocycle belongs to the positive halfspace corresponding to the edge. The edge p is not represented 
and the cocycles not containing p correspond to points at infinity (we call them points at infinity rather than directions).

From now on, we work in the ambient affine space H , where each directed edge of 
−→
G except p is seen as a positive 

halfspace of H , and (signed) cocycles of 
−→
G containing p (with positive sign) are seen as points in H . Since 

−→
G (E) is acyclic, 

then the intersection of closed positive halfspaces in E \ {p} forms a full-dimensional region R of H (every edge belongs to 
a directed cocycle). By the property seen above, the extreme points of R (at infinity or not) correspond to positive cocycles.

Let us now turn into a standard linear programming setting. A linear program consists of maximizing a linear form in a 
region of the space delimited by affine inequalities. Here, the optimization will take place in the region R defined above. As 
12
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a full-dimensional region of H , it contains at least one point, and the linear program is thus called feasible. Let f = f2 be 
the smallest element of F . It is considered as the objective function for the optimization (precisely, its associated hyperplane 
is the kernel of the linear form to maximize, increasing in the direction from the negative to the positive halfspace). The 
linear program (or the region R) is called bounded (w.r.t. f ) if the region R contains no point at infinity on the positive side 
of f (being a bounded region of the affine space is sufficient to yield a bounded linear program but it is not necessary). 
Since the property stated in Lemma 4.8 is satisfied, we can check that R is bounded w.r.t. f2. Assume that it is not the case, 
then there exists a positive cocycle C of 

−→
G (E) not containing p (i.e., a point at infinity in R) with positive sign for f2. Since 

f2 ∈ C , we have f2 = min(F ∩ C), yielding a contradiction with the property of Lemma 4.8. So, the linear program is feasible 
and bounded w.r.t. f = f2.

The fundamental result of linear programming states that a linear program which is both feasible and bounded has an 
optimal solution (a point in R having a maximal value for the objective function f ). Actually, the region R can have several 
optimal points, all lying in the face of R parallel to the hyperplane f and containing an optimal point. In lexicographic 
multiobjective linear programming, if this face is not just made of one single point, then one starts another linear program 
on this face with respect to another independent linear form. In our case, we use the next element f3 of F . The optimization 
is still made on a feasible region (as a face of R), and on a bounded region w.r.t. f3 (by the property of Lemma 4.8 again, 
for a point at infinity on a face parallel to f2, corresponding to the cocycle C , we have f2 �∈ C , and then f3 = min(F ∩ C)

as soon as f3 ∈ C ). The same construction can be repeated with successive elements of F until a unique optimal point is 
returned (which happens since F ∪ {p} is a spanning tree of 

−→
G , meaning that F forms a maximal independent set of linear 

forms for this setting).
It remains to prove that the optimal cocycle Copt of 

−→
G defined in terms of cocycle ordering corresponds to the optimal 

point of R defined above in terms of lexicographic multiobjective linear programming. Let us consider two adjacent vertices 
vC and v D in the skeleton of R . Let L be the line formed by vC and v D . Let f ∈ F be an affine hyperplane which is not 
parallel to the line L, and let v f be the intersection of L and f . Since the initial hyperplane arrangement was built from a 
graph, the uniform matroid U2,4 is an excluded minor of the underlying matroid, which implies that a line in the considered 
affine hyperplane arrangement has at most two intersection points with hyperplanes (plus one intersection point at infinity 
with p). Hence, among the three vertices vC , v D and v f of L, at least two of them are equal, hence v f = vC or v f = v D , 
which implies f ∈ C�D . (Note that this is where we use the fact the oriented matroid is graphical, and this is why the 
construction of this paper would directly generalize to regular matroids; see also [13].)

Now let us apply the definition of the ordering of cocycles of the optimizable digraph 
−→
G . Assume that f is the smallest 

element of F belonging to C�D . We have C > D if f is positive in C (hence with f �∈ D) or negative in D (hence with 
f �∈ C ). Equivalently, in geometrical terms, we have C > D if either vC is in the positive halfspace of f and v D is in the 
hyperplane f , or vC is in the hyperplane f and v D is in the negative halfspace of f . In any case, the ordering either C > D
or D < C indicates if vC has either a bigger or a smaller value than v D , respectively, with respect to the linear form defined 
by f . Finally, the overall cocycle ordering is consistent with the above lexicographic multiobjective linear programming 
setting where the comparison between vC and v D is made with respect to f2, then with respect to f3 if L is parallel to f2
(that is, if f2 �∈ C and f2 �∈ D), and so on. (One can observe that we do not use here the situation where f ∈ C ∩ D . This is 
because we focus on the skeleton of R . But we handle the case where f ∈ C ∩ D in the definition of the ordering of cocycles 
so that this ordering is easily defined for every pair of cocycles. This is done in a consistent way: if f is positive in C and 
negative in D , then, by elimination of f , there exists C ′ not containing f such that C > C ′ > D .)

To conclude, it is well-known that finding an optimal point of a feasible bounded linear program can be done in polyno-
mial time using numerical methods. Hence, finding (at most) r −1 successive optimal points in r −1 successive regions with 
respect to f2, . . . , fr , until the unique final one corresponding to Copt is found, can also be done in polynomial time. �
Theorem 4.10. The fully optimal spanning tree of an ordered directed graph which is bipolar with respect to its smallest edge can be 
computed in polynomial time.

Proof. By Lemma 4.8, each of the optimizable digraphs considered in the algorithm of Theorem 4.3 satisfies the property 
required in Lemma 4.9. So, we apply Lemma 4.9 in each of these r − 1 successive optimizable digraphs, each of them being 
built as a minor of the initial digraph. �
Remark 4.11 (Minimum weight cuts in directed graphs). As we shall see below, the problem of finding the optimal cocycle 
of an optimizable digraph has some relation with the problem of finding a minimum weight cut in a digraph, a problem 
which is related to various usual digraph problems. Note that these kinds of problems can be addressed from a pure graph 
viewpoint, but can also often be translated and addressed in a linear programming setting, allowing for polynomial time 
numerical algorithms (as we did in Lemma 4.9). On this approach, one can see for instance the book [15], and, in particular, 
concerning digraph cuts, its Sections 7.1, 8.3, and 8.4.

Here, interesting questions could be to investigate the notion of optimal cocycle of an optimizable digraph in a usual 
digraph setting, and to build it in polynomial time while staying at the graph level (with or without the property of 
Lemma 4.8, which is not satisfied in general).
13
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Let us give an answer which is available for the first computed optimal cocycle in Theorem 4.3, which is the fundamental 
cocycle of p = min(E) w.r.t. the fully optimal spanning tree of 

−→
G (by the first comment/property in Theorem 4.3 applied to 

the initial digraph). For the initial optimizable digraph 
−→
G , the ground set is the whole edge set E , hence the optimal cocycle 

Copt is a directed cocycle of 
−→
G (E) = −→

G . In this case, no negative element has to be taken into account when defining Copt
from the weight function of Definition 4.2. Finally, Copt can be seen as the directed cocycle of maximal weight in a bipolar 
acyclic digraph 

−→
G for a certain weight function on (undirected) edges. In what follows, for convenience, we rather consider 

that the weight has to be minimized.
In such a situation, in order to build such a Copt cocycle, one can use the celebrated Max-flow-Min-cut Theorem of 

digraphs. We refer the reader to [1, Section 4.5] for details. Beware that the notion of cut in a directed graph used in this 
theorem is not the same as ours, so we will call it dicut (to us, a cocycle is an inclusion-minimal cut of the undirected 
graph with added signs depending on the directions, while a dicut is a set of edges directed from one part of the vertices 
to the complementary part). Briefly, start with the acyclic digraph with weights on edges, and add all opposite edges with 
infinite weights. By this theorem, computing a minimal dicut is equivalent to computing a maximum flow, hence it can 
be done in polynomial time, while staying at the graph level (e.g., by a Ford-Fulkerson method, which by the way can be 
also understood in terms of linear programming, and which is even simpler in our case where the endpoints of p are the 
only source and sink). Since the resulting minimum dicut has a finite weight, then it necessarily corresponds to a directed 
cocycle of the initial digraph (removing edges with an infinite weight), that is, to Copt.

However, this construction cannot be directly applied to compute the optimal cocycle of a general optimizable digraph 
(nor to compute the next fundamental cocycles of the fully optimal spanning tree), since the optimal cocycle is not in gen-
eral a directed cocycle of the optimizable digraph (only of its restriction to the ground set E) and since weights of edges in F
may have to be counted negatively depending on their direction. We leave as an open question to find suitable adaptations 
of usual digraph constructions for this problem.

Independently of the above discussion, using the linear ordering on E and the fact that the objective set is built from the 
smallest lexicographic spanning tree, one can see that the first Copt is also the lexicographically smallest directed cocycle; 
we state this complementary result below.

Proposition 4.12. Let 
−→
G = (V , E) be an ordered bipolar digraph w.r.t. p = min(E). The fundamental cocycle of p with respect to the 

fully optimal spanning tree of 
−→
G , that is, C∗(α(

−→
G ); p), is the lexicographically smallest directed cocycle of 

−→
G .

Proof. Let Copt be the optimal cocycle of 
−→
G seen as an optimizable digraph as in the initial step of Theorem 4.3. By 

this theorem (and as mentioned in Remark 4.11), Copt is a directed cocycle of 
−→
G and Copt = C∗(α(

−→
G ); p). Let Cm be the 

smallest lexicographic directed cocycle of 
−→
G . We want to prove that Copt = Cm . Both Copt and Cm contain p = min(E). 

Assume for a contradiction that Copt �= Cm . Let e = min(Copt�Cm). We have e �= p, since p ∈ Copt ∩ Cm . We have e ∈
Cm \ Copt, otherwise Cm would not be lexicographically smaller than Copt. So, we have e �∈ F , otherwise we would have 
Cm > Copt by definition of the ordering of cocycles, contradicting that Copt is maximal in this ordering. Now, since e �∈
F ∪ {p}, let C by the fundamental cycle of e with respect to the spanning tree F ∪ {p}, that is, the unique cycle contained in 
F ∪ {p, e}. Let f ∈ C with f �= e, then f < e, otherwise the spanning tree (F \ { f }) ∪ {p, e} (obtained by exchanging f and e
in F ∪{p}) would be lexicographically smaller than F ∪{p}, contradicting the definition of F . Since e = min(Copt�Cm), every 
element of E smaller than e belongs to Copt if and only if it belongs to Cm . So, as every element f of C \ {e} is smaller than 
e, we get that C ∩ Copt \ {e} = C ∩ Cm \ {e}. Since e ∈ Cm \ Copt, we get (C ∩ Copt) ∪ {e} = C ∩ Cm . The intersection of a cycle 
and a cocycle always has an even size, so we get a contradiction because either C ∩ Copt or C ∩ Cm has an odd size. �
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